Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle.

نویسندگان

  • Peter C D Macpherson
  • Xun Wang
  • Daniel Goldman
چکیده

Muscle inactivity due to injury or disease results in muscle atrophy. The molecular mechanisms contributing to muscle atrophy are poorly understood. However, it is clear that expression of atrophy-related genes, like Atrogin-1 and MuRF-1, are intimately tied to loss of muscle mass. When these atrophy-related genes are knocked out, inactive muscles retain mass. Muscle denervation stimulates muscle atrophy and Myogenin (Myog) is a muscle-specific transcription factor that is highly induced following muscle denervation. To investigate if Myog contributes to muscle atrophy, we have taken advantage of conditional Myog null mice. We show that in the denervated soleus muscle Myog expression contributes to reduced muscle force, mass, and cross-sectional area. We found that Myog mediates these effects, at least in part, by regulating expression of the Atrogin-1 and MuRF-1 genes. Indeed Myog over-expression in innervated muscle stimulates Atrogin-1 gene expression and Myog over-expression stimulates Atrogin-1 promoter activity. Thus, Myog and the signaling cascades regulating its induction following muscle denervation may represent novel targets for therapies aimed at reducing denervation-induced muscle atrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases

Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle p...

متن کامل

Homer 2 antagonizes protein degradation in slow-twitch skeletal muscles.

Homer represents a new and diversified family of proteins made up of several isoforms. The presence of Homer isoforms, referable to 1b/c and 2a/b, was investigated in fast- and slow-twitch skeletal muscles from both rat and mouse. Homer 1b/c was identical irrespective of the muscle, and Homer 2a/b was instead characteristic of the slow-twitch phenotype. Transition in Homer isoform composition w...

متن کامل

Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy.

Muscle wasting occurs in a variety of clinical situations, including denervation. There is no effective pharmacological treatment for muscle wasting. In this study, we used a tibial nerve denervation model to test acupuncture plus low-frequency electric stimulation (Acu-LFES) as a therapeutic strategy for muscle atrophy. Acupuncture needles were connected to an SDZ-II electronic acupuncture dev...

متن کامل

Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy.

The rapid atrophy of skeletal muscles upon fasting or denervation is due largely to an increased rate of protein breakdown. Blocking the lysosomal or the Ca(2+)-dependent pathways did not prevent increased proteolysis in muscles from fasted animals or following denervation. In contrast, upon food deprivation, the nonlysosomal ATP-dependent process increased by 150-350%. After refeeding, this pr...

متن کامل

Histone deacetylase inhibition suppresses myogenin-dependent atrogene activation in spinal muscular atrophy mice.

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by mutations in the survival of motor neuron 1 (SMN1) gene and deficient expression of the ubiquitously expressed SMN protein. Pathologically, SMA is characterized by motor neuron loss and severe muscle atrophy. During muscle atrophy, the E3 ligase atrogenes, atrogin-1 and muscle ring finger 1 (MuRF1), mediate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular biochemistry

دوره 112 8  شماره 

صفحات  -

تاریخ انتشار 2011